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Abstract. This work presents a study on the genetic profile of the left and right hemispheres of
the brain of a mouse model of Parkinson’s disease (PD). The goal is to characterize, in a genetic
basis, PD as a disease that affects these two brain regions in different ways. Using the same whole-
genome microarray expression data introduced by Brown et al. (2002) [1], we could find significant
differences in the expression of some key genes, well-known to be involved in the mechanisms of
dopamine production control and PD. The problem of selecting such genes was modeled as the
MIN (α,β )−FEATURE SET problem [2]; a similar approach to that employed previously to find
biomarkers for different types of cancer using gene expression microarray data [3]. The Feature
Selection method produced a series of genetic signatures for PD, with distinct expression profiles in
the Parkinson’s model and control mice experiments. In addition, a close examination of the genes
composing those signatures shows that many of them belong to genetic pathways or have ontology
annotations considered to be involved in the onset and development of PD. Such elements could
provide new clues on which mechanisms are implicated in hemisphere differentiation in PD.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by
four main symptoms: resting tremors, rigidity of the limbs, slowness of movement, and
difficulty with balance and coordination. The disease is caused by a continuous loss of
the dopaminergic neurons in the substantia nigra of the brain. The degeneration of these
neurons reduces the amount of dopamine produced, which interferes in the functioning
of the basal ganglia - a region of the brain involved in the control of muscle action.
Although the exact underlying cause of PD in not yet known, most scientists believe that
genetics and/or environmental factors play an important role. Family history is gradually
being perceived to be a risk factor, with an estimated 15-25% of the Parkinson’s patients
reporting having a relative with the disease. This view was initially confirmed in 1996,
when a candidate gene for some cases of PD was mapped to chromosome 4 [4]. Since
then, several other Parkinson’s-related genes have been found. Also, a series of genetic
pathways, in particular those related to apoptosis and neurodegeneration have also been
implicated to PD.
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This work uses the same dataset introduced in Brown et al. (2002) [1] but goes one
step further in terms of the analysis of results. While Brown et al. (2002) focuses in
finding genes related to PD by comparing the brains of a PD model mouse against a
control individual, in this work we aim at finding variations in gene expression between
the left and right hemispheres of the mice brains. The dataset used comprises 7,035
genes and 80 experiments, corresponding to 40 voxels from a normal and 40 voxels from
a Parkinson’s affected rodent. It is available for download directly from the author’s
website1. The work of Brown provides extensive information on how the brain tissue
samples were collected and how the microarray instance was generated. As these are
not the central issues of this paper, we refer the reader directly to Brown’s work.

The main method used to identify differentially expressed genes is based on a math-
ematical model for inference of gene expression patterns and NP-hard problem known
as the MIN (α ,β )−FEATURE SET problem [3, 5]. This approach was previously used
to identify genetic signatures for Alzheimer’s disease [6], as well as for the molecu-
lar classification of cancer [3, 7]. Genetic signatures obtained using this method carry
a mathematical guarantee of inter-class differentiation and intra-class similarity, which
lacks in other traditional approaches based solely on statistics, such as p-value based se-
lection. The MIN (α ,β )−FEATURE SET method is briefly described in the next section,
but a more thorough discussion is found in reference [3].

MODELING THE GENE SUBSET SELECTION PROBLEM

To understand how we address the problem of finding genetic markers for the two
hemispheres of the PD brain, we will describe the MIN (α,β )−FS problem, which
provides a combinatorial formalization of the problem of interest. The MIN (α,β )−FS
problem is a variation of the well-known k−FEATURE SET and it has been introduced
with the aim of selecting robust feature sets of strong discriminative power and within-
class similarity [5]. The problem is described as:

• Instance: A set of m examples X = {x(1), . . . , x(m)}, such that ∀ i = 1, ...,m;
x(i) = {x(i)

1 ,x(i)
2 , . . . ,x(i)

n , t(i)} ∈ {N}n+1, and three integers k > 0, and α > 1,β > 0.

• Question: Does there exist an (α,β )−k−Feature Set S, S⊆{1, · · · ,n}, with |S|6 k
and such that:

– for all pairs of examples i 6= j, if t(i) 6= t( j) there exists S′(i, j) ⊆ S such that
|S′|> α and for all l ∈ S′ x(i)

l 6= x( j)
l ?

– for all pairs of examples i 6= j, if t(i) = t( j) there exists S′(i, j) ⊆ S such that
|S′|> β and for all l ∈ S′ x(i)

l = x( j)
l ?

The problem is NP−hard as the k−FEATURE SET problem is a special case where
(α,β ) = (1,0) [8]. Furthermore, the MIN (α ,β )−FS problem is not likely to be fixed-

1 http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/index.htm
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parameter tractable for parameter k as Cotta and Moscato (2003) have proved that the
k−FEATURE SET problem is W [2]-complete [2].

A fundamental distinction of the model used in this work, in relation to all previous
applications, is that we take into account the fact that different regions of the brain are
expected to have naturally distinct expression profiles due to normal tissue functional
differentiation. Therefore, the aim of our approach becomes to find genes that are
differentially expressed in the same voxel in the PD and normal brains. Under these
circumstances, we will only work with the cases in which α > 1 and β = 0. Our aim is
then to find a set S′ of k features (genes) such that for any pair of samples with different
targets (PD/normal, same voxel), there are at least α genes in S′ that support (i.e. have
distinctive expression levels) this difference in all voxels. In our tests, the parameter α
was adjusted to return a solution with around 36 genes, which is the number of genes
reported in Brown’s work.

The notion of distinctive expression levels is a critical issue. Some gene expression
studies consider two expression levels as significantly distinct if there is at least a 2-fold
difference between them. Such difference is high enough to reduce the influence of noise
and other precision limitations in the cDNA microarray technology. Therefore, given any
two samples, relative to the same voxel, one from the PD and the other from the normal
brain, we only consider that a gene is discriminative for that pair if the expression levels
for the two samples differ by at least a 2-fold ratio.

As said before, the MIN (α ,β )−FEATURE SET Problem is NP-hard, but the use
of a standard integer programming (IP) formulation, such as in references [3, 7], in
conjunction with the IP solver ILog CPLEX 9.02, allows solving medium-sized instances
to optimality in relatively short CPU times. To cite an exmple, the three optimal feature
sets shown in Figure 2 were obtained in less than 5 minutes of CPU time each, using a
Pentium IV 3.0 GHz computer with 1 Gb RAM.

PARKINSON’S DISEASE MICROARRAY DATA

The Parkinson’s disease microarray data used in this work was introduced by Brown
et al. (2002) [1]. They used a PD model created by the administration of toxic doses
of methamphetamine to the C57BL/6J strain of mice3. These doses cause a destruction
of the dopaminergic nerve, which is responsible for control movement initiation and
coordination. The brains from the control and methamphetamine-treated mice were
divided into 40 voxels each (ten volume slices taken horizontally, each divided into four
voxels) and then analyzed, resulting in a 7,035-gene microarray with 80 samples.

Brown et al. (2002) reported 36 genes as differentially expressed in the brains of the
PD and normal mice. The genes are listed in Figure 1 and will be used as benchmark for
comparison against the ones selected using the MIN (α,β )−FS method.

2 http://www.ilog.com/products/cplex
3 http://jaxmice.jax.org/info/index.html
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Gene symbol Accession # Name
Abca2 AA276158 ATP-binding cassette, sub-family A (ABC1), member 2
A1p2a2 AA222567 ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2
C1r AA261393 Complement component 1, r subcomponent
Lrpap1 AA253890 Low-density lipoprotein receptor-related protein associated protein 1
Papss2 AA244536 5’-Phosphoadenosine 5’-phosphosulfate synthase 2
Pglyrp AA238752 Peplidoglycan recognition protein
Psme1 AA239485 Protease (prosome, macropsin) 28 subunit, alpha
Pura AI894064 Purine-rich element-binding protein A
Rdh5 AA275664 Retinol dehydrogenase type 5
Rps5 AA240279 Ribosomal protein S5 (translation)
X66 AA249976 Xeroderma pigmentosum, complementation group C
Hdac5 AA017742 Histone deacetylase 5 (regulation of transcription)
Klf1 W97446 Erythroid Kruppel-like factor 1
Mata1l1 AA461637 Metastasis associated 1-like 1
Mxl1 AA472395 Ma-interacting protein 1 (antagonist of c-Myc transcription factor)
Nr2c2 AA501045 Nuclear receptor subfamily 2, group H, member 2
Sp1 AA212645 trans-Acting transcription factor 1
Cdc42 AA266975 Cell division cycle 42 homolog (ρ GTPase, cell morphology)
Crkas AA240272 v-crk associated tyrosine kinase substrate
Mlapt/Mapl AA028410 Microtubule-associated protein τ
Pkcq W98195 Protein kinase C, theta (neurite outgrowth)
Stk2 AA268478 Serine/threonine kinase 2 (apoptosis, cytoskeletal remodeling)
Ecm1 AA237378 Extracellular matrix protein 1 (secretory glycoprotein)
Eln AA239171 Elastin (extracellular matrix component)
Lamc2 W49392 Laminin, γ2 (extracellular matrix glycoprotein)
Grb2 AA183927 Growth factor receptor bound protein 2
Ppp2ca AA245165 Protein phosphatase 2a, catalytic subunit, α isoform
S100a6 AA267952 Calcium-binding protein A6, or calcyclin
Parg AA260570 Poly(ADP-ribose) glycohydrolase (apoptosis)
Siah1a AA267965 Seven in absentia homolog 1A (cell cycle arrest)
Mor1 AA266087 Mitochondrial malate dehydrogenase (oxidative phosphorylation)
Mu1 AA250181 Methylmalonyl-coenzyme A mutase
Fxr2h AA119248 Fragile X mental retardation gene, autosomal homolog 2
Qk AA220551 Quaking (RNA binding protein required for myelin formation)
Ap1b1 AA221073 Adaptor protein complex AP-1, β1 subunit
Arf2 AA266938 ADP-ribosylation factor 2 (GTP-binding protein)

FIGURE 1. List of 36 genes reported in Brown et al. (2002) as differentially expressed in Parkinson’s
disease.

COMPUTATIONAL RESULTS

The application of the MIN (α ,β )−FS method resulted in three genetic signatures for
Parkinson’s disease; one consisting of genes differentially expressed in the PD brain
compared to the normal (Figure 2a), using all samples; a second signature considering
only the samples from the left hemisphere of the PD and normal brains (Figure 2b); and
the last signature considering only the right hemisphere samples (Figure 2c).

As the biomarkers will be compared to the 36-gene signature from Brown et
al. (2002), we adjusted the parameters of the MIN (α,β )−FS approach to return
optimal feature sets with the closest number of genes (probes). The parameters were
(α ,β ) = (9, 0) for the whole brain signature; (α,β ) = (10, 0) for the left hemisphere;
and (α,β ) = (11, 0) for the right hemisphere.
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(a) Whole brain – 37 probes 

      Normal (left)             Normal (right)           Parkinson (left)        Parkinson (right) 
Gene Acc. Symbol 
AA003687 Est 
AA023268 Ceacam14 
AA289139 Aff1 
AA386895 Ttc3 
AA270371 Gsk3b 
AA268441 Gsk3b 
AA521764 Malat1 
AI425928 Wdr13 
W14332 Pcbd1 
AA152739 Psmd1 
W65520 Arpp21 
AA544949 Foxp1 
AA253648 Est 
AI390236 Tnpo2 
AA222481 Atbf1 
AA276844 Prkcd 
W17647 Ttr 
W64752 Nefm 
AA260155 Cds2 
AA016374 A2m 
AA238417 Car8 
AA109900 Hba-a1 
AI426268 Est 
AA185432 Est 
AA175243 Zbp1 
AA200091 Pcnxl3 
AA472074 Xdh 
W34187 Epha8 
AA474342 Ncaph 
AA273761 Mbd6 
AA071829 Est 
AA209065 Apob 
AA275562 Pbrm1 
AA198514 Est 
AA386657 Est 
AI427650 Est 
AA259573 Ube2e1 

      Normal                     Parkinson                       Normal                     Parkinson 
Gene Acc. Symbol 
AA222481 Atbf1 
AA276844 Prkcd 
W17647 Ttr 
AA238417 Car8 
AA175243 Zbp1 
AI426268 Est 
AA185432 Est 
AA064183 Pex16 
AA109900 Hba-a1 
AI427650 Est 
AA200091 Pcnxl3 
AA119679 Pctk1 
AI429726 Ntrk1 
AA161895 Klrd1 
W08784 Jmjd3 
AA198514 Est 
AA275562 Pbrm1 
W29432 Ahi1 
AA277329 H2-Eb1 
AA239479 Hao1 
AA231428 Prpf19 
AI390236 Tnpo2 
AA220114 Vps52 
AA253648 Est 
AA397020 Est 
AA023263 Pink1 
AA521764 Malat1 
AA209882 Nr4a1 
AA289139 Aff1 
AA003687 Est 
W14332 Pcbd1 
AA268441 Gsk3b 
AA270371 Gsk3b 
AA386895 Ttc3 
AA537490 Est 

(b) Left hemisphere – 35 probes   (c) Right hemisphere – 35 probes 

Gene Acc. Symbol 
W34187 Epha8 
AA536786 Pramel4 
AA474342 Ncaph 
AA275562 Pbrm1 
AA204021 E2f8 
AA267605 Pparg 
AA259573 Ube2e1 
AI425879 Zfp618 
W66845 Arl4c 
AA475930 Pgcp 
AA521764 Malat1 
AA270371 Gsk3b 
AA143968 Gsk3b 
AA268441 Gsk3b 
AA289139 Aff1 
AA015451 Chmp4b 
AA273761 Mbd6 
AA209592 Rxra 
AA253677 Glul 
AA388260 Est 
AA544949 Foxp1 
AA498713 Hspa9 
AA253648 Est 
W14332 Pcbd1 
W11746 Tuba4a 
W64752 Nefm 
W17647 Ttr 
AA238417 Car8 
AA109900 Hba-a1 
AI426268 Est 
AA185432 Est 
AA175243 Zbp1 
AI323576 Adrb2 
AA472074 Xdh 
AA218279 Serpine2 

FIGURE 2. Three genetic signatures obtained using the MIN (α,β )−FS method using samples from
the (a) whole brain; (b) left hemisphere only; (c) right hemisphere only. The parameters of the FS algo-
rithm were adjusted to select the closest number of biomarkers to those reported in Brown et al. (2002) [1],
in order to remove possible biases in the result analysis. Biological aspects of the findings are discussed
and compared to those of reference [1].

Pathway analysis

An analysis of the pathways most represented in each of the signatures points to
the MIN (α ,β )−FS method is as a better biomarker selection method. The study was
conducted using a web-based tool - the GATHER [9] from Duke University, USA.
Next, we present the information retrieved using the pathway analysis tool and then
we proceed to explain each of the findings. In Figure 3 we show the pathways most
represented in the genetic signatures introduced in Brown et al. (2002) and in this work.
Afterwards, we show current evidence of links between PD and the pathways present in
Figure 3. Between parenthesis, we list the signatures in which the pathway is represented
(B = Brown et al. (2002); W = MIN (α,β )−FS - whole brain; L = MIN (α,β )−FS -
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(a) Brown et al. (2002)
Pathway Gene symbol(s) p-value
Focal adhesion Bcar1 Cdc42 Grb2 Lamc2 0.004
Tight junction Cdc42 Ppp2ca Prkcq 0.004
Retinol metabolism Rdh5 0.005
Sulfur metabolism Papss2 0.01
Glyoxylate and dicarboxylate metabolism Mdh2 0.01
Reductive carboxylate cycle (CO2 fixation) Mdh2 0.01

(b) MIN (α ,β )−FS – Whole brain
Pathway Gene symbol(s) p-value
Alzheimer’s disease A2m Gsk3b < 0.0001
Hedgehog signaling Gsk3b 0.006
Complement and coagulation cascades A2m 0.009
Purine metabolism Xdh 0.01
Tight junction Prkcd 0.01
Insulin signaling Gsk3b 0.01

(c) MIN (α ,β )−FS – Left hemisphere
Pathway Gene symbol(s) p-value
Glyoxylate and dicarboxylate metabolism Hao1 0.002
Parkinson’s disease Pink1 0.004
Alzheimer’s disease Gsk3b 0.006
MAPK signaling Nr4a1 Ntrk1 0.01
Hedgehog signaling Gsk3b 0.01

(d) MIN (α,β )−FS – Right hemisphere
Pathway Gene symbol(s) p-value
Peptidoglycan biosynthesis Glul 0.0002
Nitrogen metabolism Glul 0.002
Glutamate metabolism Glul 0.002
Alzheimer’s disease Gsk3b 0.003
Hedgehog signaling Gsk3b 0.006
Purine metabolism Xdh 0.01
Insulin signaling Gsk3b 0.01

FIGURE 3. Pathways most represented in (a) the work of Brown et al. (2002) and (b-c-d) in the three
genetic signatures depicted in Figure 2, respectively. The tables yield information on the pathway name;
which biomarkers are present in the signature; and the statistical relevance of such finding, in terms of
number of hits in relation to the size of the pathway – given by the p-value. Only pathways with p-
value≤ 0.01 are reported. It is noteworthy the high number of metabolism pathways and also the presence
of Parkinson’s and Alzheimer’s disease pathways in the MIN (α,β )−FS signatures.

left hemisphere; R = MIN (α,β )−FS - right hemisphere).

• Alzheimer’s disease (W, L, R) - It is widely accepted that neurodegenerative dis-
eases in general have common characteristics. Recent studies further confirm that
both Alzheimer’s and Parkinson’s diseases share similar genetic mechanisms that
lead to alterations in physiological properties of the brain [10, 11].

• Complement and coagulation cascades (W) - No connection reported.
• Focal adhesion (B) - No connection reported.
• Glutamate metabolism (R) - The degeneration of dopaminergic neurons in the

brain of PD patients has been linked to a malfunction of the complex interaction
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between dopaminergic and metabotropic glutamate receptors (mGluRs) [12] , or to
glutamate-induced toxicity [13].

• Glyoxylate and dicarboxylate metabolism (B, L) - No connection reported.
• Hedgehog signaling (W, L, R) - The Hedgehog pathway has a role in several

developmental processes and in the maintenance of adult organs and cell types,
including neuronal subtypes [14]. This was recently confirmed by a stem cell
study for mesodiencephalic dopaminergic neuron replacement that confirmed the
importance of Fgf8 (fibroblast growth factor 8) and Shh (sonic hedgehog) for the
development of such cells [15].

• Insulin signaling (W, R) - The insulin signaling pathway has been linked to Parkin-
son’s disease due the concentration of Igf1 (insulin-like growth factor 1) receptors
in the substantia nigra region [16]. Also, a recent study has shown that human brain
endothelial cells are specially vulnerable to hyperglycemic stress, resulting in apop-
tosis. Activation of insulin signaling thus protects the cell integrity by maintaining
cellular reduction-oxidation balance [17].

• MAPK signaling (L) - This pathway has been directly involved in PD development
by a study of a mutation in gene Lrrk2 (leucine-rich repeat kinase 2), which alters
MAPK signaling cascades and triggers apoptosis, causing autosomal dominant
Parkinson’s disease [18].

• Nitrogen metabolism (R) - Nitrogen metabolism is linked to PD by the toxic oxida-
tive stress response mechanism, which triggers dopaminergic neuron death [19, 20].

• Parkinson’s disease (L) - The Parkinson’s disease pathway is represented by Pink1
(pten-induced kinase 1), whose mutations cause autosomal recessive PD [21].

• Peptidoglycan biosynthesis (R) - No connection reported.
• Purine metabolism (W, R) - Purine metabolism is closely connected to dopamine

metabolism through adenosine, an endogenous purine nucleoside that regulates it.
Recent studies have established adenosine receptor-dopamine receptor interactions
in PD and suggest adenosine as a target for PD therapy [22].

• Reductive carboxylate cycle (B) - No connection reported.
• Retinol metabolism (B) - Retinol metabolism is regulated by retinoic acid

(RA) [23], and recently RA was found to be involved in the regulation of plasticity
and regeneration in the adult brain, possibly playing a role in motor disorders such
as PD [24].

• Sulfur metabolism (B) - Defects in sulphoxidation and sulphation of xenobiotics
is a common hallmark of PD, indicating that endogenous sulphur metabolism is
disturbed [25]. Xenobiotics effects on mitochondrial function have also been linked
to neurotoxicity and apoptosis [26].

• Tight junction (B, W) - Alterations in tight junction and in the blood-brain barrier
change the integrity of the cell membrane and permeability. Several studies describe
their relation to brain degeneration and PD [10, 27].

From the 16 pathways cited in Figure 3, 11 of them can be linked to neurodegen-
eration or Parkinson’s disease. Also, the appearance of Parkinson’s and Alzheimer’s
diseases pathways in the genetic signatures introduced in this work is worth mention-
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PROTEIN BINDING RESULTS

BROWN ET AL. (2002) LEFT HEMISPHERE
CSPG4 (chondroitin sulfate proteoglycan 4) MUC1 (mucin 1, transmembrane)
RAPGEF1 (Rap guanine nucl. exchange factor) YWHAG (tyrosine 3-monooxygenase/tryptophan)
VAV1 (vav 1 oncogene) PTPN1 (tyr. phosphatase, non-receptor type 1)
E2F2 (E2F transcription factor 2) FRAT2 (freq. rearranged adv. T-cell lymphomas 2)
WASF2 (WAS protein family, member 2) RUSC1 (RUN and SH3 domain containing 1)
WASF1 (WAS protein family, member 1) RPS6KA6 (ribosomal protein S6 kinase, 90kDa)
WASL (Wiskott-Aldrich syndrome-like) SNAI1 (snail homolog 1)
CD2AP (CD2-associated protein) FRAT1 (freq. rearranged adv. T-cell lymphomas)
TNK2 (tyrosine kinase, non-receptor, 2) SGKL (serum/glucocorticoid regulated kinase-like)
ANXA2 (annexin A2) KLRC3 (killer cell lectin-like receptor)
HNRPC (heter. nuclear ribonucleoprotein C) RIPK4 (receptor-interac. serine-threonine kinase 4)
RTN4 (reticulon 4) RBP4 (retinol binding protein 4, plasma)
BCL6 (B-cell CLL/lymphoma 6) RIGHT HEMISPHERE
S100B (S100 calcium binding protein, β (neural) BRD8 (bromodomain containing 8)
PTPN1 (tyr. phosphatase, non-receptor type 1) THRAP4 (thyroid horm. receptor assoc. prot. 4)

WHOLE BRAIN NCOA4 (nuclear receptor coactivator 4)
PAEP (progestagen-associated endometrial protein) RNF8 (ring finger protein 8
APOE (apolipoprotein E) ERBP (estrogen receptor binding protein)
MUC1 (mucin 1, transmembrane) PPARGC1A (peroxisome proliferative activ. recep.)
HSPA5 (heat shock 70kDa protein 5) NR0B2 (nuclear rec. subfam. 0, group B, member 2)
SMAP (small acidic protein) EDF1 (endothelial differentiation-related factor 1)
LOC220869 (dopamine responsive protein) GADD45G (growth arrest and DNA damage)
FRAT2 (freq. rearranged adv. T-cell lymphomas 2) PPARBP (PPAR binding protein)
MTP (microsomal triglyceride transfer protein) NCOA2 (nuclear receptor coactivator 2)
SNAI1 (snail homolog 1) NRIP1 (nuclear receptor interacting protein 1)
BTN1A1 (butyrophilin, subfamily 1, member A1) FLJ22494 (hypothetical protein FLJ22494)
ERP70 (protein disulfide isomerase related protein) LOC220869 (dopamine responsive protein)
LRP2 (low density lipoprotein-related protein 2) FRAT2 (freq. rearranged adv. T-cell lymphomas 2)
FRAT1 (freq. rearranged adv. T-cell lymphomas) RARG (retinoic acid receptor, gamma)
SGKL (serum/glucocorticoid regulated kinase-like) SNAI1 (snail homolog 1)
LCAT (lecithin-cholesterol acyltransferase) BTN1A1 (butyrophilin, subfamily 1, member A1)
LIPC (lipase, hepatic) FRAT1 (freq. rearranged adv. T-cell lymphomas)
RIPK4 (receptor-interac. serine-threonine kinase 4) FABP1 (fatty acid binding protein 1, liver)
RBP4 (retinol binding protein 4, plasma) JMJD1C (jumonji domain containing 1C)
ADAMTS1 (a disintegrin-like and metalloprotease) SGKL (serum/glucocorticoid regulated kinase-like)

NR4A2 (nuclear rec. subfam. 4, group A, member 2)
RBP4 (retinol binding protein 4, plasma)
TMPRSS3 (transmembrane protease, serine 3)
NFKB1 (nuclear factor of kappa light polypeptide)
NCOA1 (nuclear receptor coactivator 1)

FIGURE 4. List of protein binding candidates (protein-protein interaction) for all the biomarkers in
each of the four signatures (with p-values < 0.01). The list was generated using the database GATHER,
and among the most common ontologies for these proteins, we must cite cell motility, regulation of
neurogenesis, actin polymerization, lipid metabolism, regulation of axon extension and regulation of
neuronal synaptic plasticity.

ing, as Brown’s biomarkers missed both. In terms of relevant biomarkers, we must give
special emphasis to Pink1 (pten-induced kinase 1), found in the left hemisphere sig-
nature and that is a well-known PD gene that protects the neuron from mitochondrial
oxidative stress [21]. Also worth mentioning is gene Gsk3b (glycogen synthase kinase
3 beta), present in the Alzheimer’s pathway. Polymorphisms in Gsk3b were found to
alter transcription and splicing and interact with tao-haplotypes to modify disease risk
in Parkinson’s [28].
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Gene ontology analysis and protein-protein interaction

In this section we investigate the ontology annotations of the biomarkers present in
the signatures and of the proteins most likely to bind with them. Using the biomarkers
in each of the signatures – the one from Brown et al. (2002) and the three in Figure 2 –
we determined the most common ontologies. Interestingly, there is a general absence
of brain-related annotations; the majority is metabolism-related (protein, glycogen, sul-
phates, hormone, among others). With this result, we went one step further and using
the GATHER protein binding database, we obtained the list of proteins most likely (p-
value < 0.01) to bind with the genes in the four signatures (see Figure 4).

For the biomarkers in Brown et al. (2002), the majority of the binding proteins have
brain-related ontology annotations such as regulation of neurogenesis, actin polymeriza-
tion, regulation of axon extension and regulation of neuronal synaptic plasticity, whereas
very few metabolism annotations are present. For the MIN (α,β )−FS signatures, in ad-
dition to brain-related ontologies, several other categories of interest are present. For in-
stance, in the signature for the whole brain, metabolism (protein and lipid) and oxidative
response ontologies are also present. For the left and right hemispheres, however, brain-
related ontologies are almost non-existent, but there are plenty of metabolism (protein
and phosphate), transcription and oxidative response annotations.

From these results, we can conclude that when looking at the whole brain at once,
the proteins that better differentiate PD and normal brains are indeed related to brain
functions, such as synapsis and neurogenesis. For the right and left hemispheres how-
ever, differentiation occurs via other mechanisms, related to metabolism, transcription
and oxidative response. Supporting this conclusion, a recent study has put some light on
asymmetries in PD, stating that metabolism and oxidative response variations between
the two hemispheres of the brain could affect differently the dopaminergic neurons in the
substantia nigra, resulting in asymmetric clinical effects [29]. However, the authors do
not find an appropriate explanation for side preference in terms of symptoms and argue
that the mechanisms behind side differentiation are still too complex to understand.

CONCLUSION

In this paper, we present three sets of biomarkers for Parkinson’s disease (PD) using
cDNA microarray data extracted from two C57BL/6J strain rodents. The first signature
was obtained comparing the samples of the whole brain of the PD-affected against a
control mouse. The second and third used the samples extracted from the left and right
hemispheres of the brains, respectively. The problem of finding the signatures was mod-
eled as a MIN (α,β )−FEATURE SELECTION problem. A pathway analysis conducted
on the three signatures and on the biomarkers reported in Brown et al. (2002) indicate
that the MIN (α,β )−FS approach retrieves biomarkers belonging to pathways more
relevant to PD, including the Parkinson’s and the Alzheimer’s diseases pathways. Also,
we made a study on the ontology of the biomarkers and of their most relevant binding
proteins. The analysis shows that the biomarkers have mostly metabolism-related on-
tologies, whereas their binding proteins show more variation, with the presence not only
of brain-related, but also metabolism, transcription and oxidative response ontologies.

Cop
y R

igh
ts 



REFERENCES

1. V. Brown, A. Ossadtchi, A. Khan, S. Yee, G. Lacan, W. P. Melega, S. Cherry, R. Leahy, and D. Smith,
Genome Research 12, 868–884 (2002).

2. C. Cotta, and P. Moscato, Journal of Computer and Systems Science 67, 686–690 (2003).
3. R. Berretta, A. Mendes, and P. Moscato, Journal of Research and Practice in Information Technology,

to appear (2007).
4. M. Polymeropoulos, and et al., Science 274, 1197–1199 (1996).
5. C. Cotta, C. Sloper, and P. Moscato, “Evolutionary search of thresholds for robust feature selection:

application to microarray data,” in Proc. of the 2nd European Workshop in Evolutionary Computation
and Bioinformatics (EvoBIO-2004), Universidade de Coimbra, Portugal, edited by G. Raidl, and et
al., Springer, 2004, vol. 3005 of Lecture Notes in Computer Science, pp. 31–40, ISBN 3-540-21378-
3.

6. P. Moscato, R. Berretta, M. Hourani, A. Mendes, and C. Cotta, “Genes related with Alzheimer’s
disease: A Comparison of Evolutionary Search, Statistical and Integer Programming Approaches,”
in Applications of Evolutionary Computing, edited by F. Rothlauf, and et al., Springer-Verlag, Berlin,
2005, vol. 3449 of Lecture Notes in Computer Science, pp. 84–94.

7. R. Berretta, A. Mendes, and P. Moscato, “Integer Programming Models and Algorithms for Molec-
ular Classification of Cancer from Microarray Data,” in Proceedings of the 28th Australasian Com-
puter Science Conference (ACSC 2005), Newcastle, Australia, 2005.

8. S. Davies, and S. Russell, “NP-Completeness of Searches for Smallest Possible Feature Sets,” in
AAAI Symposium on Intelligent Relevance, edited by R. Greiner, and D. Subramanian, AAAI Press,
New Orleans, 1994, pp. 41–43.

9. J. Chang, and J. Nevins, Bioinformatics 22, 2926–2933 (2006).
10. B. Desai, A. Monahan, P. Carvey, and B. Hendey, Cell Transplantation 16, 285–299 (2007).
11. B. Steiner, S. Wolf, and G. Kempermann, Regenerative Medicine 1, 15–28 (2006).
12. D. Pellegrino, F. Cicchetti, X. Wang, A. Zhu, M. Yu, M. Saint-Pierre, and A. Brownell, Journal of

Nuclear Medicine, to appear (2007).
13. A. Plaitakis, and P. Shashidharan, Journal of Neurology 247, II25–35 (2000).
14. M. Bak, C. Hansen, N. Tommerup, and L. Larsen, Pharmacogenomics 4, 411–429 (2003).
15. J. Burbach, and M. Smidt, Trends in Neurosciences 29, 601–603 (2006).
16. A. Quesada, H. Romeo, and P. Micevych, The Journal of Comparative Neurology 503, 198–208

(2007).
17. M. Okouchi, N. Okayama, J. Alexander, and T. Aw, Current Neurovascular Research 3, 249–261

(2006).
18. L. White, M. Toft, S. Kvam, M. Farrer, and J. Aasly, Journal of Neuroscience Research 85, 1288–

1294 (2007).
19. T. Nagatsu, and M. Sawada, Cellular and Molecular Neurobiology 26, 781–802 (2006).
20. B. Blanchard-Fillion, D. Prou, M. Polydoro, D. Spielberg, E. Tsika, Z. Wang, S. Hazen, M. Koval,

S. Przedborski, and H. Ischiropoulos, The Journal of Neuroscience 26, 6124–6130 (2006).
21. M. Dodson, and M. Guo, Current Opinion in Neurobiology 17, 331–337 (2007).
22. M. Schwarzschild, L. Agnati, K. Fuxe, J. Chen, and M. Morelli, Trends in Neurosciences 29, 647–654

(2006).
23. X. Wang, N. Krinsky, and R. Russell, Journal of Nutrition 123, 1277–1285 (1993).
24. J. Mey, and P. McCaffery, Neuroscientist 10, 409–421 (2004).
25. M. Heafield, S. Fearn, G. Steventon, R. Waring, A. Williams, and S. Sturman, Neuroscience Letters

110, 216–220 (1990).
26. A. Williams, L. Cartwright, and D. Ramsden, QJM: monthly journal of the Association of Physicians

98, 215–226 (2005).
27. S. Kalinin, D. Feinstein, H. Xu, G. Huesa, D. Pelligrino, and E. Galea, The European Journal of

Neuroscience 24, 3393–3400 (2006).
28. J. Kwok, M. Hallupp, C. Loy, D. Chan, J. Woo, G. Mellick, D. Buchanan, P. Silburn, G. Halliday,

and P. Schofield, Annals of Neurology 58, 829–839 (2005).
29. R. Djaldetti, I. Ziv, and E. Melamed, The Lancet Neurology 5, 796–802 (2006).

Cop
y R

igh
ts 




